3.3.63 \(\int (d+e x)^3 (d^2-e^2 x^2)^p \, dx\) [263]

Optimal. Leaf size=73 \[ -\frac {2^{3+p} d^2 \left (1+\frac {e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p} \, _2F_1\left (-3-p,1+p;2+p;\frac {d-e x}{2 d}\right )}{e (1+p)} \]

[Out]

-2^(3+p)*d^2*(1+e*x/d)^(-1-p)*(-e^2*x^2+d^2)^(1+p)*hypergeom([1+p, -3-p],[2+p],1/2*(-e*x+d)/d)/e/(1+p)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {692, 71} \begin {gather*} -\frac {d^2 2^{p+3} \left (\frac {e x}{d}+1\right )^{-p-1} \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (-p-3,p+1;p+2;\frac {d-e x}{2 d}\right )}{e (p+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

-((2^(3 + p)*d^2*(1 + (e*x)/d)^(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[-3 - p, 1 + p, 2 + p, (d - e
*x)/(2*d)])/(e*(1 + p)))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 692

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(m - 1)*((a + c*x^2)^(p + 1)/((1
+ e*(x/d))^(p + 1)*(a/d + (c*x)/e)^(p + 1))), Int[(1 + e*(x/d))^(m + p)*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a,
 c, d, e, m}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && (IntegerQ[m] || GtQ[d, 0]) &&  !(IGtQ[m, 0] && (
IntegerQ[3*p] || IntegerQ[4*p]))

Rubi steps

\begin {align*} \int (d+e x)^3 \left (d^2-e^2 x^2\right )^p \, dx &=\left (d^2 (d-e x)^{-1-p} \left (1+\frac {e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p}\right ) \int (d-e x)^p \left (1+\frac {e x}{d}\right )^{3+p} \, dx\\ &=-\frac {2^{3+p} d^2 \left (1+\frac {e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p} \, _2F_1\left (-3-p,1+p;2+p;\frac {d-e x}{2 d}\right )}{e (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(155\) vs. \(2(73)=146\).
time = 0.29, size = 155, normalized size = 2.12 \begin {gather*} \frac {1}{2} \left (d^2-e^2 x^2\right )^p \left (\frac {\left (-d^2+e^2 x^2\right ) \left (d^2 (7+3 p)+e^2 (1+p) x^2\right )}{e (1+p) (2+p)}+2 d^3 x \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {1}{2},-p;\frac {3}{2};\frac {e^2 x^2}{d^2}\right )+2 d e^2 x^3 \left (1-\frac {e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac {3}{2},-p;\frac {5}{2};\frac {e^2 x^2}{d^2}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^3*(d^2 - e^2*x^2)^p,x]

[Out]

((d^2 - e^2*x^2)^p*(((-d^2 + e^2*x^2)*(d^2*(7 + 3*p) + e^2*(1 + p)*x^2))/(e*(1 + p)*(2 + p)) + (2*d^3*x*Hyperg
eometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p + (2*d*e^2*x^3*Hypergeometric2F1[3/2, -p, 5/2,
 (e^2*x^2)/d^2])/(1 - (e^2*x^2)/d^2)^p))/2

________________________________________________________________________________________

Maple [F]
time = 0.02, size = 0, normalized size = 0.00 \[\int \left (e x +d \right )^{3} \left (-e^{2} x^{2}+d^{2}\right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^3*(-e^2*x^2+d^2)^p,x)

[Out]

int((e*x+d)^3*(-e^2*x^2+d^2)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="maxima")

[Out]

integrate((x*e + d)^3*(-x^2*e^2 + d^2)^p, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="fricas")

[Out]

integral((x^3*e^3 + 3*d*x^2*e^2 + 3*d^2*x*e + d^3)*(-x^2*e^2 + d^2)^p, x)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 348 vs. \(2 (58) = 116\).
time = 2.34, size = 476, normalized size = 6.52 \begin {gather*} d^{3} d^{2 p} x {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, - p \\ \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} + 3 d^{2} e \left (\begin {cases} \frac {x^{2} \left (d^{2}\right )^{p}}{2} & \text {for}\: e^{2} = 0 \\- \frac {\begin {cases} \frac {\left (d^{2} - e^{2} x^{2}\right )^{p + 1}}{p + 1} & \text {for}\: p \neq -1 \\\log {\left (d^{2} - e^{2} x^{2} \right )} & \text {otherwise} \end {cases}}{2 e^{2}} & \text {otherwise} \end {cases}\right ) + d d^{2 p} e^{2} x^{3} {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, - p \\ \frac {5}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} + e^{3} \left (\begin {cases} \frac {x^{4} \left (d^{2}\right )^{p}}{4} & \text {for}\: e = 0 \\- \frac {d^{2} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac {d^{2} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} - \frac {d^{2}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac {e^{2} x^{2} \log {\left (- \frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} + \frac {e^{2} x^{2} \log {\left (\frac {d}{e} + x \right )}}{- 2 d^{2} e^{4} + 2 e^{6} x^{2}} & \text {for}\: p = -2 \\- \frac {d^{2} \log {\left (- \frac {d}{e} + x \right )}}{2 e^{4}} - \frac {d^{2} \log {\left (\frac {d}{e} + x \right )}}{2 e^{4}} - \frac {x^{2}}{2 e^{2}} & \text {for}\: p = -1 \\- \frac {d^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} - \frac {d^{2} e^{2} p x^{2} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac {e^{4} p x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} + \frac {e^{4} x^{4} \left (d^{2} - e^{2} x^{2}\right )^{p}}{2 e^{4} p^{2} + 6 e^{4} p + 4 e^{4}} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**3*(-e**2*x**2+d**2)**p,x)

[Out]

d**3*d**(2*p)*x*hyper((1/2, -p), (3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2) + 3*d**2*e*Piecewise((x**2*(d**2)**
p/2, Eq(e**2, 0)), (-Piecewise(((d**2 - e**2*x**2)**(p + 1)/(p + 1), Ne(p, -1)), (log(d**2 - e**2*x**2), True)
)/(2*e**2), True)) + d*d**(2*p)*e**2*x**3*hyper((3/2, -p), (5/2,), e**2*x**2*exp_polar(2*I*pi)/d**2) + e**3*Pi
ecewise((x**4*(d**2)**p/4, Eq(e, 0)), (-d**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2) - d**2*log(d/e + x)/(-
2*d**2*e**4 + 2*e**6*x**2) - d**2/(-2*d**2*e**4 + 2*e**6*x**2) + e**2*x**2*log(-d/e + x)/(-2*d**2*e**4 + 2*e**
6*x**2) + e**2*x**2*log(d/e + x)/(-2*d**2*e**4 + 2*e**6*x**2), Eq(p, -2)), (-d**2*log(-d/e + x)/(2*e**4) - d**
2*log(d/e + x)/(2*e**4) - x**2/(2*e**2), Eq(p, -1)), (-d**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*
e**4) - d**2*e**2*p*x**2*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*p*x**4*(d**2 - e**2*x*
*2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4) + e**4*x**4*(d**2 - e**2*x**2)**p/(2*e**4*p**2 + 6*e**4*p + 4*e**4),
True))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^3*(-e^2*x^2+d^2)^p,x, algorithm="giac")

[Out]

integrate((x*e + d)^3*(-x^2*e^2 + d^2)^p, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (d^2-e^2\,x^2\right )}^p\,{\left (d+e\,x\right )}^3 \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d^2 - e^2*x^2)^p*(d + e*x)^3,x)

[Out]

int((d^2 - e^2*x^2)^p*(d + e*x)^3, x)

________________________________________________________________________________________